月度归档:2014年11月

JVM探索之——内存管理(三)

上节我们介绍了JVM垃圾回收的原则,还有几个垃圾收集算法:标记-清除算法、复制算法、标记整理算法、分代收集算法;现在将要说HotSpt的垃圾收集器,这小节将只是理论。

Java虚拟机规范对垃圾收集器的具体实现并没有任何规定,所以不同厂商、不同版本的虚拟机提供的垃圾收集器会有很大的不同。下面所介绍的收集器只是HotSpt1.7的垃圾收集器。

HotSpot堆的瓜分
       HotSpt它把内存空间分为几个区域:新生代、老年代、永久代;上节中也说到了分代垃圾收集算法的主要思想按对象的生命周期来进行分组;

QQ截图20141108015518

如上图JVM把堆划分为Young、Old、Perm三大区域,对应着不能年龄的对象;然后又把Young分为:Eden、Survivor From、Survivor To三小块;各个区域存放对象的区别如下:

       Young区,所有新创建的对象都存储在Eden区域中,当Eden满后将会触发minor GC把Eden中存活的对象复制到一个Survivor中,然后另一个Survivor存活对象也复制到这个中,始终保持一个Survivor区域为空的。
       Old区存放的是Survivor满后触发minor GC后依然存活的对象,如果从Eden复制到Survivor的对象存不了也可以直接存到Old区中等。Old区满了就会触发Full GC回收整个堆内存。
       Perm区存储类、方法、等的元信息,Perm也会触发Full GC进行垃圾回收。

      Sun有对各个区域给出建议的大小,Young区域为整个堆的1/4,Young中的Survivor为Young区域的1/8,安装JDK的时候有自带了visualvm工具,可以安装Visual GC插件来查看到JVM各个区域的垃圾回收情况,可以看到内存大小、GC时间、已使用大小、剩余大小等等信息如图:

jvm

垃圾收集器
      HotSpot提供了七种类垃圾收集器:Serial 收集器、ParNew 收集器、Parallel Scavenge收集器、Serial Old收集器、Parallel Old 收集器、CMS 收集器、G1 收集器。

      Serial 收集器是比较古老的一种收集器,不过到现在他还是JVM client模式中默认新生代的GC算法, Serial是单线程的,它在进行垃圾回收工作时会暂停所有其他工作,Sum称为:“Stop The World”,直到回收任务结束,然后Serial工作时占用的时间比较多但它比较简单新生代内存不大的情况下回收工作时间还是短到可以接收的,基本一秒以内。
      ParNew 收集器与Serial Collector唯一不同的就是Serial Collector是单线程的,ParNew Collector是多线程的,ParNew Collector是JVM Server模式中默认的新生代GC算法。
      Parallel Scavenge收集器 也是新生代收集算法,使用复制算法、并行的多线程,它的优势在于提高吞吐量,GC停顿的时间越短吞吐量就会越高,
      Serial Old收集器为Serial的老年代版本,单线程、“标记-整理”算法,在Client模式下为虚拟机使用。
      Parallel Old 收集器为Parallel Scavenge的老年代版本,使用多线程、“标记-清除算法”,
      CMS(Concurrent Mark Sweep)收集器是以最短停顿时间为目标的收集器,使用了“标记清除”算法实现,不过这个收集器比前面几个收集器都要复杂,运作过程有这么几个步骤:
        1、 初始标记(CMS initial mark)
        2、 并发标记(CMS concurrent mark)
        3、 重新标记(CMS remark)
        4、 并发清除(CMS concurrent sweep)
      在初始标记、重新标记的时候会“Stop The World”,初始标记标记出GC Roots能直接关联到的对象,并发标记进行GC Roots Tracing,重新标记修复在程序继续运行导致标记的变动,CMS也有不好的地方就是CMS会占用较多的CPU由于CMS是使用标记清除算法实现的,所以可能会导致较多的碎片。
      G1收集器 JDK1.7发布的时候才退出的算法,可以说是比较新的技术,相比CMS G1不会产生碎片,因为他使用的是“标记-整理”算法,G1还有就是能比较精确的空间停顿时间可以在不牺牲吞吐量的情况下进行垃圾回收,G1把整个Java堆(新生代、老年代)瓜分为多个独立区域,跟踪这些区域的垃圾堆积程度,然后维护一个优先列表,根据允许的时间优先回收垃圾最多的区域。

内存分配策略
      内存的分配规则不是百分之百固定的,它取决与虚拟机的相关参数配置还有使用的垃圾收集器组合。这里说的只是最普遍的内存分配规则,这里只是说些理论,在下篇文章将会用代码去验证。
Eden优先分配
      绝大多数情况下对象创建的时候在Eden区域分配,当分配的时候Eden中空间不足时将触发Minor GC,
较大对象直接进入老年代
      较大对象:需要使用大量连续的内存空间的Java对象,常见的有:很长的字符串、数组,写代码的时候能避免尽量避免短命较大对象,因为大对象常常会引发GC。
生命周期较长的对象进入老年代
      分代垃圾收集的思想就是按对象的生命周期来分开管理,虚拟机为每个对象定义了一个对象年龄计数器,对象在Eden区中经过一次Minor GC后仍存活并复制到Survivor中,对象年龄就为1,对象每在Survivor中度过一次Minor GC年龄将加1,当年龄到一定值(默认15)的时候对象将晋升到老年代。阀值可以通过参数设置,后面将介绍到。
动态年龄判定
      虚拟机并不定死说必须达到MaxTenuringThreshold年龄才能晋升老年代;如在Survivor空间中相同年龄所有对象大小总和大于Survivor空间的一半,大于或等于该年龄的对象就可以直接进入老年代中,无需等到指定的年龄。
空间担保分配
      年轻代在发生Minor GC时,虚拟机会检测每次晋升到老年代的平均大小是否大于老年代剩余的存储空间,比老年代剩余空间大则改为直接Full GC,如果小,则看HandlePromotionFailure设置是否允许担保失败,是则只会进行Minor GC,否则也要改为进行一次Full GC。

文章首发地址:Solinx

JVM探索之——内存管理(二)

上篇文章我们介绍了JVM所管理的内存结构也就是运行时数据区(Run-Time Data Areas),现在我们将介绍JVM的内存分配与回收
静态内存分配与动态内存分配

JVM的内存分配主要分为两种:静态内存分配与动态内存分配与之对应的是基本类型内存分配与对象内存分配;
1、静态内存分配
       静态内存分配在编译时已确定好内存空间,程序载入时JVM把一次内存分配给它,此后不会再发生变化。这些内容包括:方法中的局部变量(基本数据类型)、类变量(基本数据类型)、对象的引用;对于方法中的局部变量是存储在Java栈的局部变量表中,方法执行结束栈帧出栈,局部变量也会跟着收回内存空间;而类变量是存储在方法区中的,这里的内存回收时间是不确定的。
2、动态内存分配
      Java里给对象分配内存是动态分配的,编译的时候并不能确定对象的存储空间大小,只是创建对象时才能进行内存空间分配,而内存空间的回收是在对象不再被引用时才能回收。对象是存储在堆中,只有当GC触发时才清理回收那些没有被引用的对象的内存空间;
如下面代码段;
    public class Test {
      byte[] bytes=new byte[1024*1024*5];
      long a=1000;
      public static void main(String[] args){
        long b=2;
        byte[] base=new byte[1024*1024*1];
        Test t=new Test();
      }
    }
    bytes:是数组内存分配在堆中的,但引用存储才方法区中,JVM将使用动态内存分配,编译时无法确定存储空间只有当创建test对象时才为bytes分配存储空间,只有当该对象没有被引用时才能被GC回收;
    a:是类变量,基本数据类型,当Test编译载入时就确定了存储空间,存储在方法区中;
    b:是方法中的基本数据类型局部变量只有执行该方法时才在栈帧的局部变量表中分配存储空间方法执行完成后就释放该栈帧,也回收局部变量表中的存储空间;
    base:局部变量,只有执行到该语句时才在堆中为它分配存储空间,引用存储在栈帧局部变量表中没有被引用时才能被GC回收;
    t:对象与数组一样在堆中分配存储空间,但对象引用存储在栈帧局部变量表中,对象没有被引用时GC才能回收存储空间;

确定是否可被回收
    接下来我们将介绍JVM的内存回收,JVM在进行垃圾回收时首先要做的是确定哪些是垃圾,然后才能回收垃圾所占用的内存空间。上面我们说过,对象要是被回收内存的前提是该对象没被活动的对象引用,那JVM是怎么知道一个对象是否被引用的呢。
一般用于确定对象是否被引用的算法有两种:引用计数算法、根搜索算法;
    引用计数算法(Reference Counting):在对象中添加个引用计数器,当有引用时对象计数器加一,引用消失时,计数器减一,只要引用计数器为0时该对象就是没有被引用的,比少编程语言使用该算法,如:python等。
    根搜索算法(GC Roots Tracing):Java、C#等使用该算法判断对象是否存活,该算法从一系列为“GC Roots”的对象为起点,从这些节点开始搜索,走过的路径为引用链(Reference Chain),当对象到GC Roots无任何引用链时,此对象就是不可用的,此不可用的对象将作为回收的对象。

Root
        1、2、3为活动对象,三个对象到GC Roots均有引用链
        4、5 为死对象,对象到GC Roots不可达

      Java中,可用于作为GC Roots的对象有:
         虚拟机栈的栈帧中局部变量表中引用的对象
         本地方法栈中的引用对象
         方法区中常量引用的对象
         方法区的中的类静态属性引用的对象
         类的Class对象的引用

垃圾收集算法
    1、 标记-清除算法(Mark-Sweep),算法分为了标记、清除两个阶段,他根据我们前面所讲的方法判断对象是否可被回收,如可回收则标记起来,待标记完所有对象后统一进行回收;
    2、 复制算法(Copying)复制收集算法把内存分为两块容量相同的空间,每次只使用一快,当一快用完时就将还存活的对象复制到另一块中,然后把原来使用过的内存空间进行回收。
    3、 标记-整理算法(Mark-Compact)该算法与标记清除算法一样首先对要清理的对象进行标记,不同的是,接下来他将存活的对象往一端移动,然后回收该端边界以外的内存空间。
    4、 分代收集算法(Generational Collection),现在不少虚拟机采用该算法,如:HotSpot,该算法把对象按不同的存活周期将内存瓜分为几个区域。如:HotSpot把堆分为新生代与老年代,然后根据各个区域的特点采用比较适合的收集算法。一般新生代对象生命周期比较短,所以采用复制算法;而老年代对象生命周期较长,所以比较适合采用标记-清理、标记-整理算法来回收。

文章首发地址:Solinx